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The paper is a continuation of [1], The method of auxiliary program const -
ructions [2] is developed here for linear evolution systems,

1, We consider the evolution system
y=A@Qy+ituv,usP,veQ (L.1)

in a Hilbert space {y} =Y. We restrict ourselves to the cases when the solutions
yltl =ylt, ty, ye, w -1, vI-1], £ > t, . canbe treated somehow or other pro-
ceding from the weak Cauchy equality

$g-y [t =<q-T (¢t 1)y +S Cg-T@Df(ultl,vizddr  (1.2)

ty

Here T (¢, 7), t > T, is a suitable semigroup operator, ¢ is an arbitrary element
of Y and {g-y) is the scalar product, The norm of y is denoted by the symbol

lyl Let ys [t] be the value obtained from y [¢] in (1,2) by the transform -
atim T (&, ). Let A, be some linear operator from Y into some Hilbertspace
Y™ andlet yv[t] be the value obtained from ys [t] by transformation A
We assume that for the evolution system [1]

Y] = {0, ¢, <ty e {yolywiel], Ik, t*)} 2
induced by (1, 2) and by the transformation A, T (¥, f) we can constructa w-
model which approximates (1, 3) from below [1] and is described by the unified dif -
ferential equation [3 ]

w=g (¢ 9+p |el=1, p=P) (1.4)

where P (g)is a convex weak compactum in YY) such that <{p-¢> >0 for
PE=P(Qandin P (g) thereis an element p, for which {p,-g> = 0. Com-
pacta P (g) are assumed to be uniformly bounded. In the terminology of [1] the
action F® [f,, t*) on model(1,4) is the choice of the constant control g [t] =
Ggr tx <CE<C %,  and the action FW [z, £*) is the choice of the weakly
measurable control p [, B <Ot << t*, According to (3] the function & (¢, gq)
in (1.4) can be sought from the condition

( () [t#%] — N [ ) s

E(te» g) = lim supinf sup 1,

t*—t, 40 I y(*)[t‘]

When the conditions from [1] are fulfilled for transformation 4.7 (9, t) the problem
on the encounter of y[f] with a specifiedset M can be solved by solving the

1



2 N, N, Krasovskii

analogous problem for Yy {tl.  But, in its own turn, this problem can be solved on
the basis of the approximation model (1.4). Therefore, the ogject of this paper is to

set up the problem on encounter with some set M for the motions w [¢] of (1.4).

2, A strategy [1] prescribes the control p [-1 = {p [t], ©; <t << 71} asa

function of  {t;, w [t;], t;41, g [1,1} so that
pll=U (m, wlt, T, g [6)) (2.1)
For specified  w [to] = wy, ® > t, and set
M=I[{ w):t<<t<9 wes M® (2.2)

the problem is to seek a strategy P which for every motion w [t] = w [¢, ¢, w,,
P, gl-11 of(1.4) generated by it ensures the inclusion

wltle M (@) (2.3)

for at least one T & [2o, @]  for any sequence ¢ [7;] (i = 0, 1, 2,. . ., To==¢,).
In what follows the index ¥ in the designation of Hilbert space Y is dropped,
Space Y in the strong topology is denoted Y, and space Y in the weak topology is
denoted Y,. Function E (f, q) is assumed continuousin [t,, 81 x Y, and
bounded on the weak compactum  {||¢ [ <C1} ; it is assumed to be positive~homo-

geneous in ¢, i.e., & (¢, ag) = ak (¢, g0 for @ > 0. We admit the condition
max min {g*- (¢§ (¢, @) +p)> =E (¢, ¢*) (2.4)
g

lgll =1, p P (@

for every ¢*, |g* || = 1. Bymotion w [t] = wlt, t,, wy, ps [-], s (-1

we mean a weak solution w [f] of (1.4), defined by the equality
t

Cqwit]y = <g-w>+ § <a-(g,5 (7, g4) + Py [¥DY dr

iy

(2.5)

which must be valid for every g .

Suppose that some topological space {{} of parameter { has been chosen and
thataset {L}n  {T} has been defined for every value m & [¢,, 9] . The
sets {L}, are assumed compact and satisfying the condition

& = NG 1>, (2.6)
The parametric aggregates of sets
Mg =l <t ye M@, D)l (2.7)

and of functions E (f, g, §), where § & {{}n and m & [t, 8] ,are taken
as chosen, Sett M (¢, {) are bounded, convex and closed and satisfy the inclusion

M@, O C M) (2.8)

In addition, from every admissible sequence {#; L} (k = 1,2,...) wecansep-
arate a subsequence {f;, {;] for which the sets M (t;, {;) converge by inclusion

toset M (2., L) -
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We make a remark, Some sections M () ofset M can be empty, Therefore,
in what follows, for those expressions in which the variable ¢ occurs as an argument
in M (t) orin M (§, {) we could stipulate that we are dealing with only those
values of ¢ for which these sets are nonempty, We shall omit such a stipulation, but
will bear it in mind, In any case we shall assume that the sets M (8) and M (8, §)
are nonempty.,

For a fixed value of { the function E (f, g, ) iscontinuousin [n,8] X Y,
and upper-semicontinuous in [n, %] X Y,; fora fixed ¢ this function is lower-
semicontinuous with repsect to  {. We construct the function

T

€t wyy 00 = max (@) + ) 2 0, Dd—p@ B D) @)

for t,&In, 1l and T ¢, 8l. Here p (g, 7, §) is the support function
of set M (T, c), i.e.,

p(g T §)= max v yeM@E ) (2.10)

On the basis of (2, 9) we construct the functior

& (2, @) = {13121}1 go (5, w, 7, L)y v 1t, 8], L = (L), (2.11)

The minimum in (2, 11), under the assumption made, is actually achieved on a certain
pair {1° {°}, as follows from the properties, discussed below, of the function &° (¢,
w, ¥, ). We consider the following halfspaces:

Yt =Iy:<gpdp> £ 9 (2.12)
Y*(@ g ) =g <&@ g Ol (2.13)
Condition 2, 1, For any position {ts» W} for which
o (b we) >0, t, <, ° >, (2.14)
for every g*, || ¢* || = 1 we can find at least one minimizing pair {t°, {°} from
(2,11), for which
Y (te @*) N (Q Y*(te, ¢, DN+ (2.15)

where the intersection is taken over the set S (f4, Wer Ts £°) of all maximizing
elements ¢° from (2.9). The symbol (@) denotes the empty set,
The following statement is valid,
Theorem 2. 1. Let &g (fo, wy) = 0. If Condition 2.1 is satisfied, astrategy
U exists solving the encounter problem (2,3).

8, Let us discuss the properties of function e°. 1t can be verified that under the
condition 8%(t,, w,, %, £) > 0 the maximum in (2,9) is achieved on elements ¢°
with unit norm, For fixed 7 and [ the function &°(#, w, T, {) is contiauous in

[n, 7] XY, andlower-semicontinuous in [n, ©] X Y, Theset S ({, w, 7, {)
of all maximizing elements ¢° from (2,9) for the position {t, w}, where e°(t,
w, T, ) >0, iscompactin Y, Intheregion e°(¢, w, T, ) >0 the sets
S (¢, w, T, §) are strongly upper-semicontinuous by inclusion with respect to the
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variation of {¢, w} in [n, ©] XY, The proof of Theorem 2, 1 uses the following
fact,
Lemms 3,1, LetCondition 2,1 pe satisfied and

eo (1%, w*) >0 (3.1)

and let the inequality
>ttty v >0 (3.2)
be valid for all minimizing T, from (2,11) for position {t*, w*} . Then for every

g*, |¢* | =1, and o >0 wecanchose §* >0 anda control p [f] = p*,’
t > t*, which satisfies the condition

{g*p*> >0 {3.3)
and is such that along the solution w [t] = w [¢, t*, w*, p*, ¢*] of equation
w' = g*¢ (¢, ¢%) 4 p* (3.4)

the inequality

o (8, wltl) < eo (£*, w*) + a(t —¢,) (3.5)

is satisfied for all ¢ < [¢*, t* - 6*].

We fix the minimizing value {t°, {°} for the given position {s*, w*}, As a
consequence of the inequality e, (s, w [2]) < e° (¢, w [2], v°, §°) when ¢ & [t*, * 4 9],
to prove Lemma 3,1 it is sufficient to prove the inequality

e° (¢, w (1], 7° 0°) << &° (¢*, w*, %% %) + o (1 — %) (3.6)
We choose {t° {°} and p* in(3.3) from the condition
(P* + g% (%, ¢¥) = ) Y* (%, ¢°, 1) (3.7)
q.
g eS8 (tF, w*, 1°, £°)
in accord with condition (2, 15) , By the definition of &° we have
Ae® == e°(2, w [2], 1° [°) —e° (%, w*, 1° °) =< ¢° (1) w [I]> + (3.8)

Sg(ﬁP» 2° (1), £)de —p (3° (1), 0, L7) — (g° (t¥)-w*) —
{

§ 2@ e t)dp—p e (9, =, 1)

t.
where ¢ (2 is the maximizing element from (2, 9) for position {r, w{il}. By the
sense of ¢° (2} we have the inequality
10

<q° (1) - w*y + Si(qﬂ, g° (), £ d@ — p (g°(2), T° L°) CK@° (#%)-wh) + (3.9)
th

fe@ com, a0 —p @@, v 1)
.

The inequality /
8e° < <° (1) (w ] — w8 — ( £ (0, 0 ), v L) do (3.10)
30
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follows from (3,8) and (3,9). The motion w [f] of (3,4) is strongly continuous in
t.  Therefore, as a consequence of the strong semicontinuity of & (t, w, 7°, )
with respect to {¢, w} from [¢*,+°] X ¥, , forany % > 0 wecan find §, > 0 such
that when | :— s* | 8, <<y wecan find, forany ¢° (1), an element ¢° (s*) sat-
isfying the inequality
fe® () — @ (M % (3.11)

But then, as a consequence of the continuity of § (s ¢, {°) in  [#*,1°] X Y, , from
(3.10) we obtain, according to (3,4), the following inequality:
A <L (1%)-(p* + ¢*E (1%, gD (t— ) — (3.12)
E@ ¢, D) (t— ")+ a(t— %)

under the condition ¢— * < 8 (a) = 8%, where & (&) > 0 is a sufficiently small
number, By the choice of p* in(3,7) and by the definition (2, 13) of Y'*, from(3, 12)
we obfain the needed inequality (3.6) and, together with it, inequality (3,5).

4, Letus discuss the properties of function £,. It can be verified that function
go(t,w) is lower semicontinuous in [#,, 9] X Y, and right-continuous with respect
to ¢ inl#,, ®Ix Y, at those positions{t,, W,}where the minimizing values €°>>¢,.
Further, for some position let €o (f,yw,)>>0 and let the minimizing values 1° from
(2. 11) satisfy the condition 1° > &, =4 ¥, V& > 0. Then we can find § > 0 such
that for all positions {¢, w} satisfying the condition

t—t, <8, t>1t, |[w—w,|<b (4.1)
all the minimizing values 1° will satisfy the condition
v>i+y v>0 (4.2)
The following statement is valid,
Lemma 4, 1, Letcondition 2,1 be satisfied and let the inequalities

8 (Ler wy) >0, >, + 9, ¥.,>0 (4.8)
be fulfilled for a given position {f,, w,}. Then for every ¢, | 4] = 1 , we can
choose § > 0 andacontrol p_ [l & P (q,), t > £, suchthatforall ¢ &

{t,, t, + 8] the inequality
&y (t, w [t]) < &g (t*, w*) (4.4)
is fulfilled for the corresponding solution w [t1=wl?, f,,w,, p,[-1, g,]of Eq, (1.4).
Let us assign a certain value of o > 0, We consider the sheaf of all possible mo-
tions w (¢l = w e, ty, we, p -], guls t2> s of (1,4 ),and we single out those motions
wltl, t, < t<<7, whose distance from points {¢, w} of the region
& (5 w) < & (ta, we) + @ (E— t,)
do not exceed o + a (¢t — t,) for each fixed t¢e [t,, v] . As a consequence of
(4.2) and of the right-continuity of function &, (¢, w) .in [z, ®] X ¥, ¢ we can find
6 >0 and, next, choose « >0 sosmall that the condition

g (tLw) >0, °2t+y

(4.5)
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is satisfied at all the points {¢, w} mentioned,
We can now assert that for every choice of a sufficiently small o« > 0 ,among the

motions w [t] selected,we can find at least one motion w [zl defined for 1z, < <

ty + 8. Let us assume to the contrary that this is not so, Let ¢* <ty + 8 be the
upper bound of values of v for which motions w[s], # < :<Ct , of the class de-
lineated bave been defined, At first we assume that among the motions w [¢} selected
there are no motions {w{¢l, & <X < *}. Then we continue each motion w [¢], # <C

t<{t , uptoinstant ¢* by choosing plfl & P (g4), v << ¢t < ¢* , arbitrarily, Among
these motions we consider a weakly convergent sequence o™ 1], & <<t ¢*, k=1,

2,..., forwhich T —st* — 0. The weak limit {w, [z], #,<C¢<Ct*] of this
sequence is generated by some weakly measurable control p, [ & P {(g,) asacon-
sequence of the weak compactness of all possible controls p, [l &= P {q,) (see[4]).
But then, because of the lower semicontinuity of function &, (¢, w) in [z, 8 X ¥,
we are convinced that we can find a point w such that condition (4, 5) is fulfilled and
the inequality

lv—we IS+ a(t—)

is valid for every point wy [#], e << ¢t << * , Thus, the motion {w [t] # < t<C t*}
constructed belongs to the class delineated, We assume that ¢* < ¢, + 6. Let w* be
a point satisfying the conditions

fw* — w, [ << @+ a (* — 1)

80 (t*i W*) < e0 (ttn wt) + o (t* - t*)
We select the vector ¢* = (wy [¢*] — w*) /| wy [#*] — w* |. If w, [¢*] = w*, we can
select any vector ¢*, | ¢* | = 1. By Lemma 3.1 we can choose 8* > 0 and control

p* in(3,3)such that for all ¢< [#*, ¢* 4 8*] the inequality
gy (2, w* [1]) << &g (%, w*) + @ (£ £*) < &g (Lay We) + & (8~ L4)

is valid for the corresponding motion w* [t] = w [¢, ¢*, w*, p*, ¢*], > ¢*, of (3.4).
If here we choose the control p [¢] = p, = P (g,), t> t*, in accord with (2,4) from

the condition
<g*- (g€ (1%, gx) -+ pa)> L (%, g%)

then for the motion wy [¢] = w ¢, i*, wy, Py, ¢4] generated by it and for the motion
w* [t] we can obtain the estimate
lw, [l—wrld<atalt—t*)ta@—t)=at+a(t—1) (4.7)

(4.6)

for all e [t*, t* -+ 8,,], where 68,, > 0 is a sufficiently small number, Thus, as
a consequence of (4.6) and {4, 7) the motion {w, [¢], &, < ¢ < t* + %}, where % > 0
is a sufficiently small number, falls into the delineated class of motions w [s]. But
this contradicts the choice of  ¢*. The contradiction provesthatwithachosen § > 0
we can find, for any sufficiently small o« >0 , asolution{w, {4, t, < < & + 68}
which satisfies the conditions needed., The weak limit of the motions {w"’) [, 6 <
1< e+ 6}, k=1,2,.., constructed for some sequence ¢y — (, isthe
motion w [¢], ¢, << ¢t < t, + 68, satisfying condition (4.4). This proves the lemma,
The next statement derives from Lemma 4.1,

Lemma 4. 2. Let position {f,, w,} satisfy the condition
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g (2., wy) <<e, €>0, 1, <?
Wy % M{_a] (tr g) for o [0’ SL C = {gt.}

Then for every t* =I[¢,, 9] and ¢y, | ¢, = 1 we can find at least one  control
pltl & P (g,) such that for the comesponding motion w [t} = w [t, £, w,,
p -1, g,] of (1.4) either the condition

witle Mt (x, §) for [ = {L}- (4.9)

is fulfilled for some value of T & [t*, T%] or the inequality
eo (t, with e (4.10)
is fulfilled for all ¢ & [t,, 1*]. Here the symbol 2] denotes the closed & -neigh-
borhood of set M.
Let us consider the sheaf of all possible motions w {#]l = wls, 4, wey, p -], a4l
te < t << *, of (4,1). We assume that condition (4, 9) is not fulfilled for even one of
them, Suppose then, to the contrary, that condition (4.10) too is not fulfilled for even
one such motion w{t], Let t* < t* be the upper bound of those v 2>t for each
of which we can find a motion w [¢] satisfying condition (4,10) when ¢, << t. As
in the proof of Lemma 4,1 we can be convinced that then we can find a motion w [1]
satisfying condition (4,10) when z, < t<C ¢*, Here g (t*, w [t <e and
t°> ¢+ for all minimizing values t° corresponding to position {s*, w[¢*]}. But
then according to Lemma4, 1 this motion 1w [t] can be somewhat continued past the
point ¢ = * with the inequality e, (s, w [#]) ¢ preserved, However, this contradicts
the definition of the number ¢* < t*. This contradiction proves Lemma 4.2,

5, Theorem 2.1 is proved on the basis of the material in Sect, 4 as follows, Sup-
pose that a partitioning A = {T;} of the interval [#,, ©#] has been chosen, Suppose
that aposition w [7;] (v; > To = £o) has been realized, for which

go (T, wltg) =0

whtJeEM (v, ) for L= {Z;}1i
and that the instant T;,, € (T, 9) and the control ¢ [t] = ¢ [7;}, 1, <<t < T3
have been chosen, We specify a sequence {g;, >0}, k=1,2,.. ., limg, = ¢ as
k — co. Then by Lemma 4,2 we can construct a sequence of controls p; [t] & P
(g [t;]) such that for some subsequence of corresponding motions (%) [¢] either the
condition
g (£, w® [t]) < &

forall T; <t < 7t;;; orthe condition
wlt e M P, ), e (Lo

for some value T & [1;, 7;,,] is fulfilled, In the first case, because of the weak
lower semicontinuity of function & (£, w) in [ty, @] X ¥, the control Py [#],
generating the weak limit w, [¢] for the subsequence of motions w(* [¢}, ensures
condition

&p (f, Wy {ﬂ) = &g (tw w*)
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for all ¢ €= [v;, Tinl. In the second case the control p, [f], generating the weak
limit w, [t] for the sequence of motions w ¥ {t], ensures condition

we [T ] EM (T4 5i)s L E4LS-,
for T, € [t;, Tis]. Here {Ty, L4} is the limit pair for the sequence {T®), {;}
(k =1,2,...). Thisproves the theorem.

We cite special cases when the hypotheses of Theorem 2,1 are satisfied.

1°, When M (¢, {) = M (t) and the maximum in (2,9) is achieved on a single
element ¢ for every position {f,, w,} wheree®(ty, w,, 7, §) >0, 1> 1, .

2°, When M isa compactum in [f,, ¢] x Y, andeachset M (¢, {) isa
point M (¢, {) & M (t), while the intersection [} Y (£, q) = W(t), ¢ = Y , is
nonempty for every {. In this case wedefine functions & (2, g, §) by the equalities

EG g, D) =88, @9 = miun g-yp for y= W(t)

The fulfillment of Condition 2,1 follows from the condition that the maximum in(2,9)
again is achieved on a single element ¢° and the halfspace Y (¢, ¢°) intersects the
halfspace Y* (¢, ¢°, T) = Y,* (f, ¢°). Therefore every halfspace Y (t, ¢ also
intersects Y. * (¢, ¢°).

3°, When M is a compactum in [#,, &] X Y, and eachset M (¢, §) isa

point M (¢, §) = M (1), function & (¢, ¢, {) = — & (¢, — g) and function — §
(t, — gq) is concave in g; the intersection of all halfspaces Y* (¢, ¢, §), ¢ Y,
is nonempty, Under the condition that function — £ (t, — q) is concave in g each

halfspace Y (¢, g) intersects the intersection [, Y'* (¢, g, {), ¢ &Y. Consequently,
condition (2, 15) of Condition 2,1 is satisfied.

Condition 2, 1 can be developed somewhat by assuming that in it we can find at
least one minimizing pair {t°, {°} from(2.11), B > 0, e >> (0, and a continuous
function {v (£), £ (8}, © (t,) =7°, §(¢t,) = {° t < [¢,, t, + B, such that

Yt ¢ NN Y* @ g 5 )+
Y(te 0,7 §) = 2 <g-9)> < &i (br 0 7% )]
8t ¢, 7 0) = lim inf R (8, ¢, §) —

(¢ — L) EES 4 D) () — )+ B . T 0) —
ty
89 ¢, ©)do +p(g, T(2) L) —0(g, =% D))
for all ¢ satisfying the condition || g — ¢° | <Ce.

6, Let us now consider the evasion problem for a system described by the unified
differential Eq., (1.4). Let the set
M=1I gy te <t S yE M )] (6.1)
be specified. The problem is to find a strategy V
p Ll={l], u<t<tu}=V( wltl, v, ¢ o) (6.2)
which for specified {fo, wo} and M ensures, for every motion w [tl =wlt,

te. wo, V, g [-11  generated bv it, the evasion
w [t] & M* () (6.3)
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forall t & [t,, ®] forsome value &> 0 foranysequence ¢l7;] (i =0, 1,
2,- sey To = tu).
Suppose that the parametric aggregates of sefs

MY = yha<t<hHyes M LN (6.4)
and the functions £ (¢, ¢, L), { = {{}n, A= {A)g, n & [to, O], have been chosen.
We assume that the sets M (¢, {, A) are defined for all t & [0, 01, 1o & [20, 0,
are bounded, convex, and closed, vary continuously in the Hausdorff metric as £, {,
and A vary, and satisfy the conditions

MOCUMELN, repx (6.5)

for every {. We assume thesets {{}, and {{A}¢}n to be compacta in the cor-
responding spaces of parameters { and } ; in addition,

Mo, = (1 {1 <ns

{Meh, = y{{x}t}na N> Ny

For a fixed value of { the function § (f, g, {) is continuousin [n,8] x Y, and
is upper semicontinuous in [n, #] X Y,; for fixed ¢ this function is continuous
with respect to  {. We construct the function

&%ty Wy, T, L, M) = max({q-w,) + (6.6)
fai<1

§§(t, g, 0)dt—p(g, 7, L, )

for t, [, ], v & [¢,, 0], when the right-hand side of (6. 6) is nonnegative;
otherwise e° (2., w,, T, {, A) = 0. Here p (g, v, {, A) is the support function of
set M (2, L, A). On the basis of (6, 6) we construct the function

g (2, w) = min & (t, w, T, L, A) (6.7)
(LR AN

el 8, te{th, re{k

We consider the following halfspaces: Y (¢, g) of (2,12) and
Ye(tg, D) =1I{t y}: g-d>E (g DI (6.8)

Condition 6, 1, For any position {t*, w*} for which

g, (t*, w*) >p >0, <o
and for every g, g, ] = 1 , the condition

Y (0 N (D Yu (@ PN+~ (6.10)

is valid, where the intersection ranges over all §° from the sets S (t*, w*) of all
maximizing elements ¢° of (6.6), corresponding to all the minimizing values {~°,
L%, A°} from (6.7), corresponding to position {t*, w*}.
The following statement is valid.
Theorem 6. 1. Let &, (t,, wy) = v > P. If Condition 6,1 is fulfilled, a
strategy ¥V exists solving the evasion problem (6,3) with & = .

6.9)
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7. Let us discuss the properties of function €o. Under the conditions introduced
this function is continuous in [¢,, 9] X Y,. Thesets I (¢,, w,) of minimizing
triples {t°, §° A°} corresponding to position {f,, W} are upper semicontinuous
with respect to variation of position {¢,, w,} in lts, 9) X Y for &, (f,, w,) >

0, t >t,. Theset S (fy, w,) of all maximizing elements ¢° corresponding
to position {f4, w,} for all minimizing values {1°, {°, A°} when &, (¢4, wy) > 0
is compact in Y, and these sets § (¢, w,) are upper semicontinuous by inclusion
with respect to variation of {Z,, wy} in (¢, ®] x V.

Lemma 7.1, When Condition 6.1 is fulfilled we can find an element

pre P (g%) (7.1)
satisfying the inclusion
(p* + (5 PNEN Y (%, 45 ) =S, w) (7.2)
qo
We assume, to the contrary, that it is impossible to find such an element p* in

(7.1) and (7.2). Then by the theorem on the separation of convex sets [5] we can find
a linear functional

FW) ="Cgev> lael=1 (7.3)
such that
lggp)>a+te pesP(g¥) (7.4)
Gy <<o-—e, y&Ye(* ¢° %), =Sk wr), >0 (7.5)
qo

But as a consequence of condition (7.2), relations (7,4) and (7. 5) signify that the in-
tersection {1Y, being considered does not intersect the halfspace Y (t*, ¢,), con-
tradicting condition (2.4 ) which must be fulfilled for every choice of g¢«. This contra-
diction proves Lemma 1.1,

The proof of Theorem 6,1 relies on the following statement,

Lemma 7.2. Let Condition 6.1 be fulfilled and let {t*, w*} be a position in

region (6.9), Then for every g¢*, || g* || = 1, anda > Owe can select an admissible
control p[t] = p*, ¢t > t*, and § >> 0 such that the inequality
go (t, wt] > &0 (t*, w*) — a (¢ — t¥) (7.6)

is fulfifled for all ¢ & [t*, t* 4 §] along the corresponding solution w {t] = w
(¢, t*, p*, q*] of Eq, (1.4).
We select a constant control p [f] = p* which satisfies conditions (7,1) and
(7.2), Letus estimate the quantity

Aey = g, (8, w [&]) — gy (¢*, w*) 1.7)
By the definition (6, 7) of quantity &, (t, w) we have
s (7.8)
Aeg = <q° (t)-w [”) ‘Jr‘ S g (‘P- qo (t)» C° (t)) d(P e p(qo (t)v T° (t)’ §° (t)' A’o (t))_

t
@)
@@ — {E@, (%), () de —p (° (41 (%), 17 (%), ()
*

where  ¢®(2), ¢ (#%), T°(8), v (&%), L°(0), () and A (1), A°{(*) are
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corresponding maximizing elements from (6, 6 ) and minimizing elements from (6,7)
associated with the positions {s*, w*} and ({¢ w[t]} , respectively. By the definition
of the minimizing triple {1°, {°, A% , from (7, 8) follows the inequality
oty
Be><ax* Owith+ § (e, a4 (), T () do —
t
P (gx° (1) T (2)s T (2D A° (1)) — <gs° (£)-0*> ~—
()
{ 2@ o LV e —p (@ (0 (1), T (1) 4° ()
t'
where ¢.° (#) is the maximizing element from (6, 6} for the position {¢*, w*}, but for
the triple {T° (), & (1), A°n}. Further, it is sufficient to consider only some right«-
convergent sequence {&} (k= 1, 2,...), lim g = ¢* 4 0, for which 7° {tx)— T°(t*),
() — L°(*), A (tx) = A° (¢*) and q,° (tx) — ¢° (t*). Then from (7.9) we have
29 (trs w [tk]) — 8o (Baer w) 2> <@° (%) (w [tx] — w*)> — (7.10)
¢
§e@ o0 v omydp—a—m
e*
Since w[t] is a solution of Eq, (1.4) when ¢ = ¢* and p = p*, from (7,10) fol-
lows the inequality
o {tk, w [25]) — & (2%, w*) 2> [{g® (t*)-(p* + ¢*-E (t*, ¢*))) — (7.11)
E(* ¢ (1*), C(*N] (tx— £*) — a (tgy — t*)
if only t = [¢*, t* + 8], where &> 0 is a sufficiently small number, The inequality
proving Lemma 7, 2 follows from (7, 11) by condition (7, 2) and by the definition(6, 8)
of halfspace Y, (t*, &% &) .

Lemma 7.8, Let Condition 6.1 be fulfilled and let {t,, w,} be the position
for which g, (t,, w,) =y > B, ¢, <<O.Thenforevery g¢,, | g, =1, and
* < [t,, 8], o > 0, we can choose an admissible control p [t] = p, [t],

t > t,, such that the inequality 5

g0 (t, w (1)) > & (g, wy) — @ (¢ — 1,) (7.12)
is fulfilled for all ¢ & [, T*] along the corresponding motion w [¢] = w [¢, ¢,
Dy [']a 9*1 of (1,4).

Let ¢* be the upper bound of the values of T for which condition (7,12) can
be fulfilled for #, <X t<¢ 7. As in Sect, 4 we can verify on the basis of the continuity
of function &, (¢, w) that there exists an admissible control ps [#], £, < < t*, which
ensures inequality (7,12) for 2, < t<C ¢*. But then, if *<7*, accordingtoLemma
7.2 we can continue this control p{t] somewhat past the point #*, so that condition
(7.12) is fulfilled for ¢z, < ¢< t* + 6, 8§ > 0. But this contradicts the choice of
number ¢*, and this proves Lemma 7.3,

(7.9)

8. Theorem 6,1 is proved on the basis of the preceding material as follows, Sup-
pose that a partitioning A = {1;} of the interval [#,, ] has been chosen, Let a
position w [7;], (t; > T, = t,) be realized for which

g (v, wlu) =9 >
and let an instant T, & (1;, §) andacontrol ¢ [f] = ¢ [7;), T; << < T s
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be chosen, We specify a sequence {e, > 0} (k =1,2,...),lime; =0 as
k — oco. Then in accord with Lemma 7,3 we can construct a sequence of controls
p" [¢] such that condition

g (8, w® [t]) > & (t*’ w*) — &

is fulfilled for all T; <C ¢ < 7T;4; for some subsequence of corresponding  motions
w® [¢] . Because of the continuity of function &, (¢, w) in [{,, 8] X Y,

the control p, [t] generating the weak limit w, [¢] for the subsequence of motions
w'*) [¢] ensures the condition

€q (t9 Wy [t}) > € (tti:? w*) =¥

forall t & [v;, ;). This proves Theorem 6,1,

Particular cases, when the hypotheses of Theorem 6, 1 are fulfilled, are: 1) when
section M (#) varies continuously as { varies and eachset M (¢, {, A) is a
continuous curve m (£, §, A) & M (f) when n < t < §;foreachvalueof ¢ and ¢

Y (¢, q) (1 W) 5=
where the W (f) are closed convexsets, and E (Z, ¢, {) = min<y-¢g) for ¥ &
W (1); 2) when under the same assumptions on sets A (t) and M (¢, {, A) for

each value
{;}Yﬂc(t’qtc)¢@? QEY

and E (¢, q, §) = — E(t, — ¢) and function — E (f, — g) isconcavein g.
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